
FROM DRONE TO
GITHUB ACTIONS
- A CI/CD
ODYSSEY
~ Pavel Vařenka

REASON S, NEEDS &
PAIN POINT S

❖ At GWI, we adhere to the "you build it, you run it" approach (as long as

YAML is not actually involved!)

❖ We scaled & doubled our engineering rather fast

❖ Despite having reliable pipelines, the whole setup was long outdated and

needed refactoring

❖ Constrained by compute power and reaching limits

❖ We accumulated some tech debt & struggled heavily with scaling our

meager Drone VM

❖ Separate UI, rather annoying

❖ Drone license cost us approximately ~40k GBP per year

2

❖ Over 60 individual repositories ("microservices" in Scala, Go and Python +

microfrontends), each with their our pipelines

❖ One dedicated large VM running all of our Drone pipelines (approximately 5 to 10

jobs per repo) couple of times per day with deployments once or twice a week

❖ Some of them long-running (~30 to 40 minutes), especially Scala builds

❖ Very limited manual triggers

❖ Helm deploy bash script for continuous delivery

❖ Otherwise quite typical use-case – linting, testing, artifact offload, image build, rinse

& repeat

3

P REV IOU S SET U P

CHOOSIN G A SAVIOR

4

• We contemplated cost, ease of migration & syntax familiarity

• As we host our code in GitHub, the first candidate was obviously GitHub Actions

• The DevOps team performed some cost/benefit analysis and we realized that if we want

to do this, it is going to be a year-long effort (ideally without downtime and code

freezes)

• A new plan was born – gather the whole engineering, identify easiest repos to migrate,

and start with the low-hanging fruit

• To do that, though, we needed to conquer our first beast – the infrastructure itself

• Naturally, the idea of GitOps came to mind as well, but that's a whole another CD story...

5

SLAY ING T HE DRAGON & GOING
SELF - MAN A G ED IN KU BERNET E S

❖ We b u r n t o u r s e l v e s o n c e – n o m o r e s i n g l e V M s , i t ' s a p a i n t o m a n a g e a n d s c a l e

❖ We d e c i d e d t o f o l l o w t h e b e s t p r a c t i c e s a n d w e n t w i t h t w o a u t o s c a l i n g n o d e p o o l s –

r e g u l a r & m e m - o p t i m i z e d

❖ E a c h P o d r e p r e s e n t e d o n e j o b , a n d w a s s c h e d u l e d b a s e d o n t h e [r u n s - o n] l a b e l , e . g . ,

r e s o u r c e h u n g r y S c a l a p i p e l i n e s w o u l d b e s c h e d u l e d o n a d e s i g n a t e d r u n n e r w i t h m o r e

r e s o u r c e s , b a s i c G o p i p e l i n e s (n o o f fe n s e , t h a t ' s a g o o d t h i n g !) w o u l d u t i l i z e r e g u l a r

r u n n e r

❖ T h i s g a v e u s t h e f l e x i b i l i t y t o i m p l e m e n t a d d i t i o n a l g o o d i e s , s u c h a s i m a g e c a c h i n g ,

e n h a n c e d s e c u r i t y & f u l l c o n t r o l o v e r s c a l i n g

6

7

❖ We deployed our GitHub runners to support DIND (Docker-in-Docker), although now they

support Kubernetes mode as well

❖ We decided to use native ARC (Actions Runner Controller) open-sourced by GitHub

❖ The workflow is pretty simple – ARC would pick up GH event based on a webhook, check the

runner group/set label, and route jobs accordingly, each one matching exactly one Pod

❖ If we needed more resources, we could simply bump the nodepool, or create a new one

DOING T HE GRU NT
WORK

8

❖ So, how did we pull this off?

❖ First task – convince devs that they will really, really like it

❖ Second task – run a simple PoC and calculate costs

❖ … and then back to a drawing board

E N D L E S S C O M M I T S , E N D L E S S P I P E L I N E S

9

❖ As you probably already know, testing pipelines is monumentally tedious effort

❖ Commit -> see why it failed -> fix -> rinse & repeat

❖ Naturally, we tried testing locally and can recommend one handy tool – ACT:

https://github.com/nektos/act

❖ This, though, didn't yield in intended results – it's fine for simple pipelines and jobs that can be done in isolated

environment, but not for multi-job pipelines relying on external auth

❖ We created a temporary env for testing and essentially split the pipelines into a few functional steps (one might call it unit

testing)

❖ From there, it was a breeze – just piercing puzzles together. Sometimes by force :)

https://github.com/nektos/act

T HE DEV IL IS IN T HE DET AILS

10

❖ During the first few repositories, the DevOps team had to help out devs on a regular basis, but then it slowly turned into a

mundane routine

❖ We overlooked one design aspect – one giant VM consolidated everything together, hence you could reference other

steps easily everywhere in the pipeline. Built an image? Reference! Want to echo tags? Reference!

❖ Unfortunately, this is the part where things went wrong – devs were used to this perk, and we had to find a way to

minimize the friction

❖ Using exclusively steps instead of jobs was pointless, as it unnecessarily increased runtimes

❖ Using too many jobs, on the other hand, resulted in bloated pipeline definitions and performance issues

❖ We decided on a suitable middle ground – templates and composite actions

ENT ER T HE COMP OSIT E
ACT IONS

11

❖ We decided to take advantage of something that Drone locked – composite actions & reusable templates

❖ We created a dedicated repository for hosting composite actions that we created along with devs for some common use

cases with predefined inputs and outputs that can easily be referenced and reused

❖ On top of that, each dev repo contained a reusable workflow that allowed easier additions of new jobs

❖ Before further migration, we dedicated a lot of time (& painful testing) to this idea, which saved us a lot of time, as

suddenly we had a frame of reference instead of blindly trying to replicate the same functionality in GHA

❖ Apart from 3rd party composite actions (e.g., for building images and adding SSH keys), we also managed to reuse our

Helm deployment script in one of those actions

❖ This all sped up migration of other repos by ~40%

THE GOOD, THE
BAD & THE

UGLY

12

THE GOOD

13

❖ Massive help from individual dev teams and owners of the repos, it would take us ages in 5 people

❖ Successfully distributing the migration toil among the engineering teams after initial onboarding

❖ Scaling advantage – autoscaling nodes, adding/removing nodepools, granular approach towards labeling (where and how

the jobs will run)

❖ Improved DevEx, devs can now easily see the results in Actions tab

❖ Saved a lot of $$$ and got rid of the VM ~3 months after the migration

❖ Composite actions that will speed up development of new pipelines

❖ Easier cleanup and no more mess left behind on the VM

❖ Amazing cooperation across teams and sharing DevOps knowledge

THE BAD

14

❖ Some frustration regarding individual jobs – in the past, we have taken advantage of everything running on one VM, so

devs could save artifacts/images/scripts/... there and reuse them as needed before final push

❖ Tedious testing and troubleshooting

❖ Due to some initial confusion and long-running stuck jobs, we somehow managed to break the GitHub API limit

❖ Some people tended to "abuse" the nature of autoscaling, e.g., they were not operating in constrained environment

anymore

❖ Docker-in-Docker has some quirks, especially when adding SSH keys and/or auth

❖ Couple of dirty hacks in the beginning to make things working (yes, they are still there)

THE UGLY

15

❖ We could've handled the migration process a bit better

❖ There was a lot of back-and-forth between teams regarding running two pipelines simultaneously (Drone & GHA)

❖ We often forgot to remove the original YAML definition of Drone pipelines, resulting in duplicate (and frequently failing)

pipelines

❖ Very hard to test deployment and a lot of conditional statements due to workflow_dispatch, a manual trigger than can be

used only after being merged into main

❖ Too much effort going into reusable workflows, despite it paying off in the end

❖ No standardized process of when exactly we should merge the Actions pipeline definition, which caused some friction and

side effects

SHOU LD YOU MIGRAT E?

16

❖ That all depends on your use-case

❖ If you have a rather small engineering, there is no point in

going self-managed, as it requires some degree of

maintenance

❖ Keep in mind that sooner or later, you will scale

❖ If you are already constrained by current CI/CD solution, it

will only get progressively worse

❖ There is no right or wrong tool – apart from Jenkins and

Bitbucket Pipelines

THANK YOU!
~ Pavel Vařenka

17

	Slide 1: From drone to github actions - a ci/cd odyssey
	Slide 2: Reasons, needs & pain points
	Slide 3: previous setup
	Slide 4: Choosing a savior
	Slide 5
	Slide 6: Slaying the dragon & going self-managed in kubernetes
	Slide 7
	Slide 8: Doing the grunt work
	Slide 9: endless commits, endless pipelines
	Slide 10: The devil is in the details
	Slide 11: Enter the composite actions
	Slide 12: The good, the bad & the ugly
	Slide 13: The good
	Slide 14: The bad
	Slide 15: The ugly
	Slide 16: should you migrate?
	Slide 17: Thank you!

