y/ T

FROM DRONE TO
GITHUB ACTIONS
- A CI/CD

ODYSSEY

~ Pavel Varenka

thth

REASONS, NEEDS &
PAIN POINTS

/7
A X4

/7
A X4

/7
A X4

/7
A X4

>

0

o0

>

.0

At GWI, we adhere to the "you build it, you run it" approach (as long as
YAML is not actually involved!)

We scaled & doubled our engineering rather fast

Despite having reliable pipelines, the whole setup was long outdated and
needed refactoring

Constrained by compute power and reaching limits

We accumulated some tech debt & struggled heavily with scaling our
meager Drone VM

Separate Ul, rather annoying

Drone license cost us approximately ~40k GBP per year

PREVIOUS SETUP

Over 60 individual repositories ("microservices" in Scala, Go and Python +
microfrontends), each with their our pipelines

One dedicated large VM running all of our Drone pipelines (approximately 5 to 10
jobs per repo) couple of times per day with deployments once or twice a week
Some of them long-running (~30 to 40 minutes), especially Scala builds

Very limited manual triggers

Helm deploy bash script for continuous delivery

Otherwise quite typical use-case — linting, testing, artifact offload, image build, rinse

& repeat

/
CHOOSING A SAVIOR

We contemplated cost, ease of migration & syntax familiarity

As we host our code in GitHub, the first candidate was obviously GitHub Actions

The DevOps team performed some cost/benefit analysis and we realized that if we want
to do this, it is going to be a year-long effort (ideally without downtime and code

freezes)

A new plan was born — gather the whole engineering, identify easiest repos to migrate,
and start with the low-hanging fruit
To do that, though, we needed to conquer our first beast — the infrastructure itself

Naturally, the idea of GitOps came to mind as well, but that's a whole another CD story...

\

" 1 \
(oo
-~ LN

e

P s
7

r
LAY
)
" |
S 2o -
JevOns
Sy r\ 3
My » St Y 2P P L
> £ Y. .\\
’ L)

Yoot

w

p———

SLAYING THE DRAGON & GOING
SELF-MANAGED IN KUBERNETES

% We burnt ourselves once — no more single VMs, it's a pain to manage and scale

® We decided to follow the best practicesand went with two autoscaling nodepools —
regular & mem-optimized

% Each Pod represented one job, and was scheduled based on the [runs-on] label, e.g.,

resource hungry Scala pipelines would be scheduled on a designated runner with more

resources, basic Go pipelines (no offense, that's a good thing!) would utilize regular

runner

*

L)

L)

* This gave us the flexibility to implement additional goodies, such as image caching,

enhanced security & full control over scaling

We deployed our GitHub runners to support DIND (Docker-in-Docker), although now they
support Kubernetes mode as well

We decided to use native ARC (Actions Runner Controller) open-sourced by GitHub

The workflow is pretty simple — ARC would pick up GH event based on a webhook, check the
runner group/set label, and route jobs accordingly, each one matching exactly one Pod

If we needed more resources, we could simply bump the nodepool, or create a new one

on: [push]
name: self-hosted-example
jobs:
simpleExample:
runs-on: self-hosted

steps:

— uses: actions/checkout@master

DOING THE GRUNT
WORK

+* So, how did we pull this off?
s First task — convince devs that they will really, really like it
+* Second task — run a simple PoC and calculate costs

X/

+%* ...and then back to a drawing board

0 GitHub Actions

O
O-C
OR@,

0

L)

Cd

0

>

>0

L)

Cd

0

0

*

0

L)

ENDLESS COMMITS, ENDLESS PIPELINES

As you probably already know, testing pipelines is monumentally tedious effort
Commit -> see why it failed -> fix -> rinse & repeat
Naturally, we tried testing locally and can recommend one handy tool — ACT:

https://github.com/nektos/act

This, though, didn't yield in intended results —it's fine for simple pipelines and jobs that can be done in isolated
environment, but not for multi-job pipelines relying on external auth
We created a temporary env for testing and essentially split the pipelines into a few functional steps (one might call it unit

testing)

From there, it was a breeze — just piercing puzzles together. Sometimes by force :)

https://github.com/nektos/act

THE DEVIL IS IN THE DETAILS

During the first few repositories, the DevOps team had to help out devs on a regular basis, but then it slowly turned into a
mundane routine

We overlooked one design aspect — one giant VM consolidated everything together, hence you could reference other
steps easily everywhere in the pipeline. Built an image? Reference! Want to echo tags? Reference!

Unfortunately, this is the part where things went wrong — devs were used to this perk, and we had to find a way to
minimize the friction

Using exclusively steps instead of jobs was pointless, as it unnecessarily increased runtimes

Using too many jobs, on the other hand, resulted in bloated pipeline definitions and performance issues

We decided on a suitable middle ground —templates and composite actions

10

R/
0‘0

ENTER THE COMPOSITE
ACTIONS

We decided to take advantage of something that Drone locked — composite actions & reusable templates

We created a dedicated repository for hosting composite actions that we created along with devs for some common use
cases with predefined inputs and outputs that can easily be referenced and reused

On top of that, each dev repo contained a reusable workflow that allowed easier additions of new jobs

Before further migration, we dedicated a lot of time (& painful testing) to this idea, which saved us a lot of time, as
suddenly we had a frame of reference instead of blindly trying to replicate the same functionality in GHA

Apart from 3rd party composite actions (e.g., for building images and adding SSH keys), we also managed to reuse our
Helm deployment script in one of those actions

This all sped up migration of other repos by ~40%

11

2, AL) -

e

THE GOOD, TH
BAD & THE
UGLY

12

/_
THE GOOD

Massive help from individual dev teams and owners of the repos, it would take us ages in 5 people

Successfully distributing the migration toil among the engineering teams after initial onboarding

Scaling advantage — autoscaling nodes, adding/removing nodepools, granular approach towards labeling (where and how
the jobs will run)

Improved DevEx, devs can now easily see the results in Actions tab

Saved a lot of $SS and got rid of the VM ~3 months after the migration

Composite actions that will speed up development of new pipelines

Easier cleanup and no more mess left behind on the VM

Amazing cooperation across teams and sharing DevOps knowledge

13

/_
THE BAD

Some frustration regarding individual jobs —in the past, we have taken advantage of everything running on one VM, so
devs could save artifacts/images/scripts/... there and reuse them as needed before final push

Tedious testing and troubleshooting

Due to some initial confusion and long-running stuck jobs, we somehow managed to break the GitHub API limit

Some people tended to "abuse" the nature of autoscaling, e.g., they were not operating in constrained environment
anymore

Docker-in-Docker has some quirks, especially when adding SSH keys and/or auth

Couple of dirty hacks in the beginning to make things working (yes, they are still there)

14

/_
THE UGLY

We could've handled the migration process a bit better

There was a lot of back-and-forth between teams regarding running two pipelines simultaneously (Drone & GHA)

We often forgot to remove the original YAML definition of Drone pipelines, resulting in duplicate (and frequently failing)
pipelines

Very hard to test deployment and a lot of conditional statements due to , @ manual trigger than can be
used only after being merged into

Too much effort going into reusable workflows, despite it paying off in the end

No standardized process of when exactly we should merge the Actions pipeline definition, which caused some friction and

side effects

15

SHOULD YOU MIGRATE?

That all depends on your use-case

If you have a rather small engineering, there is no point in
going self-managed, as it requires some degree of
maintenance

Keep in mind that sooner or later, you will scale

If you are already constrained by current CI/CD solution, it

will only get progressively worse

There is no right or wrong tool — apart from Jenkins and

Bitbucket Pipelines

16

THANK YOU!

~ Pavel Varenka

17

	Slide 1: From drone to github actions - a ci/cd odyssey
	Slide 2: Reasons, needs & pain points
	Slide 3: previous setup
	Slide 4: Choosing a savior
	Slide 5
	Slide 6: Slaying the dragon & going self-managed in kubernetes
	Slide 7
	Slide 8: Doing the grunt work
	Slide 9: endless commits, endless pipelines
	Slide 10: The devil is in the details
	Slide 11: Enter the composite actions
	Slide 12: The good, the bad & the ugly
	Slide 13: The good
	Slide 14: The bad
	Slide 15: The ugly
	Slide 16: should you migrate?
	Slide 17: Thank you!

